Early and late endosomal compartments of Entamoeba histolytica are enriched in cysteine proteases, acid phosphatase and several Ras-related Rab GTPases.

نویسندگان

  • L A Temesvari
  • E N Harris
  • S L Stanley
  • J A Cardelli
چکیده

Pure populations of early and late endosomes of Entamoeba histolytica were isolated by magnetic fractionation and characterized. It was shown that these vesicles were enriched in acid phosphatase and cysteine protease activities. An important virulence factor, a 27-kDa cysteine protease, was also enriched in early and late endosomes of E. histolytica. These data suggest that E. histolytica hydrolases reside in compartments that are part of or communicate with the endosomal pathway. To begin to identify the role of Rab GTPases in E. histolytica, an oligonucleotide approach was employed to screen an E. histolytica cDNA library for genes encoding Rab-like proteins. cDNAs encoding a Rab11-like protein (EhRab11) and a novel Rab protein (EhRabA) were isolated and characterized. The EhRab11 cDNA predicts a polypeptide of at least 206 amino acids with a molecular mass of at least 23.2 kDa. Phylogenetic analysis and alignment of EhRab11 with other Rab proteins demonstrated that EhRab11 shared significant homology at the amino acid level with Rab11-like proteins from a number of other eukaryotes, suggesting that EhRab11 is a Rab11 homolog for E. histolytica. The EhRabA clone predicts a polypeptide of 219 amino acids with a molecular mass of at least 24.5 kDa. EhRabA shared only limited homology at the amino acid level with other Rab proteins, suggesting that it is a novel member of this family of GTP-binding proteins. Finally, Western blot analysis demonstrated that EhRab11 and a previously described Rab7-like GTPase from E. histolytica was enriched in magnetically purified endosomal compartments of this organism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early and late endosomal compartments of <i>Entamoeba histolytica</i> are enriched in cysteine proteases, acid phosphatase and several Ras-related Rab GTPases

Pure populations of early and late endosomes of Entamoeba histolytica were isolated by magnetic fractionation and characterized. It was shown that these vesicles were enriched in acid phosphatase and cysteine protease activities. An important virulence factor, a 27-kDa cysteine protease, was also enriched in early and late endosomes of E. histolytica. These data suggest that E. histolytica hydr...

متن کامل

A Proteomic and Cellular Analysis of Uropods in the Pathogen Entamoeba histolytica

Exposure of Entamoeba histolytica to specific ligands induces cell polarization via the activation of signalling pathways and cytoskeletal elements. The process leads to formation of a protruding pseudopod at the front of the cell and a retracting uropod at the rear. In the present study, we show that the uropod forms during the exposure of trophozoites to serum isolated from humans suffering o...

متن کامل

Rab4 and Rab7 define distinct nonoverlapping endosomal compartments.

Several Rab GTPases have been localized to distinct compartments of the endocytic pathway. Rab4 is associated with early endosomes and recycling vesicles and regulates membrane recycling from early endosomes. Rab7 is localized to late endosomes and is involved in the regulation of membrane transport between late endosomes and lysosomes. Although Rab4 and Rab7 appear to regulate distinct transpo...

متن کامل

Involvement of raft-like plasma membrane domains of Entamoeba histolytica in pinocytosis and adhesion.

Lipid rafts are highly ordered, cholesterol-rich, and detergent-resistant microdomains found in the plasma membrane of many eukaryotic cells. These domains play important roles in endocytosis, secretion, and adhesion in a variety of cell types. The parasitic protozoan Entamoeba histolytica, the causative agent of amoebic dysentery, was determined to have raft-like plasma membrane domains by use...

متن کامل

Transcriptome Analysis of Encystation in Entamoeba invadens

Encystation is an essential differentiation process for the completion of the life cycle of a group of intestinal protozoa including Entamoeba histolytica, the causative agent of intestinal and extraintestinal amebiasis. However, regulation of gene expression during encystation is poorly understood. To comprehensively understand the process at the molecular level, the transcriptomic profiles of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and biochemical parasitology

دوره 103 2  شماره 

صفحات  -

تاریخ انتشار 1999